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1 Problem Statement

Our protagonist, Euclid, is offered a gamble. A pair
of six-sided dice are rolled and unless they come up
snake eyes he gets a bajillion dollars. If they do come
up snake eyes, he’s devoured by snakes.

So far it sounds like Euclid has a 1/36 chance of
dying, right?

Now the twist. First, we gather up an unlimited
number of people willing to play the game, including
Euclid. We take 1 person from that pool and let
them play. Then we take 2 people and have them
play together, where they share a dice roll and either
get the bajillion dollars each or both get devoured.
Then we do the same with 4 people, and then 8, 16,
and so on, doubling each time.

We keep going until one of those groups is devoured
by snakes, then the game stops. Is the probability
that Euclid will die, given that he’s chosen to play,
still 1/36?

Argument for NO aka the frequency argu-
ment: Due to the doubling, the final group of peo-
ple that die is slightly bigger than all the surviving
groups put together. So if Euclid’s chosen to play he
has about a 50% chance of dying!

Argument for YES aka the one-fair-roll ar-
gument: The dice rolls are independent and when-
ever Euclid’s chosen, what happened in earlier rounds
is irrelevant. His chances of death are the chances of
snake eyes on his round: 1/36.

So which is it? What’s Euclid’s probability of dy-
ing, conditional on being chosen to play? If Euclid’s
mom learns that Euclid was chosen to play in this
game and the game is now over, how worried is she?
If Euclid wanted to play the one-shot version, does
he still want to play the doubling groups version?

Fine print: The game is not adversarial; the dice
rolls are independent and fair. Groups are chosen
uniformly and without replacement. Void where pro-
hibited. See Bartha and Hitchcock (1999) for details.
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2 Solution (With Limits)

We want the probability that Euclid dies given that
he is chosen to play, Pr(death | chosen). It seems like
we can ignore the 0% chance of rolling not-snake-eyes
forever and say that eventually about half the people
who are chosen die, but let’s Bayes it out carefully:

Pr(death | chosen) = Pr(chosen | death)Pr(death)
Pr(chosen)

=
1 · Pr(death)
Pr(chosen)

.

But if Euclid’s part of an infinite pool, he has a
0% chance of being chosen and a 0% chance of dying.
The probability we want is 0/0. *robot-with-smoke-
coming-out-of-its-ears-emoji*

Since we can’t directly calculate the probability in
the infinite case, a natural thing to do is to take a
limit.

To get a feel for where we’re going, suppose Eu-
clid’s one person in a huge but finite pool. Now sup-
pose he is actually chosen. There are two ways that
can happen:

1. The pool runs out and everyone survives.

2. The pool doesn’t run out and Euclid has about
a 50% chance of dying.

But knowing that Euclid is chosen is Bayesian evi-
dence that we had many, many rounds of survival.
If an early group died then most of the pool wasn’t
chosen, so probably Euclid wasn’t chosen.

Thinking like a Bayesian means shifting your prob-
ability in light of evidence by seeing how surprised
you’d be in various universes by that evidence. If
an early group died then most people aren’t chosen
and in that universe Euclid is surprised to be cho-
sen. If no group died then everyone was chosen and
in that universe Euclid is fully unsurprised that he
was chosen. That’s the sense in which being chosen
is Bayesian evidence that more people survived. In

particular it’s at least weak evidence that everyone
survived.

So even with an absurdly huge pool of people,
where there’s essentially a 0% chance of everyone sur-
viving, if Euclid knows he was chosen (which itself has
near zero probability, but, you know, if ) then that
means Euclid is more likely to be in that essentially-
0%-probability universe where everyone survives.

Enough hand-waving and appeals to intuition.
Let’s Bayes it out to see what Pr(death | chosen)
is exactly, in a truncated game where we stop after
N rounds. Once we have that, we can take the limit
as N goes to infinity.

First, let M be the size of the pool:

M =

N∑
i=1

2i−1 = 2N − 1.

And let p be the probability of snake eyes, 1/36.
We can now compute the probability of Euclid being
chosen by summing up (1) the probability he’s chosen
for the first round, 1/M , plus (2) the probability that
the first group survives, 1 − p, and that he’s chosen
for the 2nd round, 2/M , plus (3) the probability that
the first two groups survive and he’s chosen for the
3rd round, etc. Writing that out as an equation gives
this:

Pr(chosen) = 1
M + (1− p) 2

M

+ (1− p)2 4
M

+ (1− p)3 8
M

+ . . .

+ (1− p)N−1 2
N−1

M

=

N∑
i=1

1
M 2i−1(1− p)i−1.

For Pr(death) the calculation is very similar but
every term is multiplied by p. To die, Euclid has to
be chosen and then roll snake eyes. This can happen
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on any round, all of which are mutually exclusive.
We can then factor that p out and we have

Pr(death) = p · Pr(chosen).

Working out that expression for Pr(chosen) wasn’t
even necessary! We compute Pr(death | chosen) like
so:

Pr(death | chosen) = Pr(death)
Pr(chosen)

=
p · Pr(chosen)

Pr(chosen)
= p.

It doesn’t depend on N at all! The limit as N
goes to infinity is just... p, or 1/36, the probability
of rolling snake eyes.

3 Can We Roll Not-Snake-Eyes
Forever?

What about the argument that, with unlimited peo-
ple, there will necessarily be a finite round n at which
snake eyes is rolled? And for every possible such n,
at least half of the chosen players die. After all, the
probability of rolling not-snake-eyes forever is zero.
(More precisely, in the limit as n goes to infinity, the
probability of rolling not-snake-eyes n times in a row
goes to zero.)

That’s all true but let’s work out the probabil-
ity of rolling not-snake-eyes forever conditional on
Euclid being chosen. Starting with Pr(snake eyes)
as the probability that a game rolls snake eyes—
unambiguously 1—we have, by the definition of con-
ditional probability:

Pr(snake eyes | chosen) = Pr(chosen ∧ snake eyes)
Pr(chosen)

.

In the infinite setting that’s 0
0 because Euclid has a

0% chance of being chosen from an infinite pool. So
let’s work it out in the limit with a cap of N rounds
and finite pool M as before:

N∑
i=1

(1− p)i−1p · 2
i − 1

M
N∑
i=1

1
M 2i−1(1− p)i−1

.

In the numerator we’re summing over every possible
round i at which we could roll snake eyes, saying that
we need to roll not-snake-eyes i−1 times followed by
one snake eyes and that Euclid is chosen in any round
from 1 through i. The denominator, Pr(chosen), is
the same as in the previous section.

Now algebra ensues. We multiply the numerator
and denominator by M to get rid of the 1/M factor,
then distribute the (1 − p)i−1p over the 2i − 1 and
split it into two summations:(

N∑
i=1

2i(1− p)i−1p

)
−
(

N∑
i=1

(1− p)i−1p

)
N∑
i=1

2i−1(1− p)i−1

.

These are finite sums so that’s kosher. The right side
of the numerator is the probability of rolling snake
eyes by round N , which is Pr(snake eyes) in the limit
as N goes to infinity, so we replace that sum by one:(

N∑
i=1

2i(1− p)i−1p

)
− 1

N∑
i=1

2i−1(1− p)i−1

.

(We can also get the answer of 1 for that summation
by pulling out the p to leave a geometric series with
common ratio 1− p, which sums in the limit to 1/p.)

Almost there! Pull a 2p out of the remaining sum
in the numerator to get this:

2p

(
N∑
i=1

2i−1(1− p)i−1

)
− 1

N∑
i=1

2i−1(1− p)i−1

.

Notice that the sums in the numerator and denom-
inator are now identical. We distribute the denomi-
nator,

2p− 1
N∑
i=1

2i−1(1− p)i−1

,

and combine the terms in the sum,

2p− 1
N∑
i=1

(2(1− p))
i−1

,
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to see that the denominator is a geometric series with
common ratio 2(1−p). As long as the common ratio is
greater than or equal to 1, the denominator diverges
and the above approaches 2p in the limit as N goes
to infinity. How do we know 2(1 − p) ≥ 1? Because
we can rearrange it as p ≤ 1/2 and that’s true for us,
namely p = 1/36.1

In conclusion, the probability of eventually rolling
snake eyes, conditional on Euclid being chosen to
play, approaches 2p = 1/18 in the limit. Which is
to say that the conditional probability of rolling not-
snake-eyes literally forever is 17/18.

(Or to say it less sensationally: For any finite N ,
the conditional probability of taking more than N
rolls to hit snake eyes is greater than 17/18.)

This vindicates our initial intuitive argument that
being chosen is Bayesian evidence—strong Bayesian
evidence, it turns out!—of never rolling snake eyes.
And it invalidates the intuition that we can safely
condition on snake eyes being rolled just because
it definitely will be rolled (unconditionally). An-
other version of that intuition is that any event with
probability 1, such as rolling snake eyes eventually,
must be independent of any other event. But if
being chosen and rolling snake eyes were indepen-
dent then, by definition of independence, Pr(chosen∧
snake eyes) = Pr(chosen) · Pr(snake eyes). And if
that were true, we’d conclude from the above deriva-
tion of Pr(snake eyes | chosen) that

Pr(snake eyes)

=
Pr(chosen)Pr(snake eyes)

Pr(chosen)

=
Pr(chosen ∧ snake eyes)

Pr(chosen)
=Pr(snake eyes | chosen)
=1/18.

1What would happen if we had p > 1/2? In that case,
by the preceding derivation, Pr(snake eyes | chosen) = 1 so
no chance of everyone surviving. That makes sense because
the nature of the paradox changes if p > 1/2: The probability
of dying in the one-shot version is already greater than the
fraction of people who die when the game ends in snake eyes.
The frequency argument and the one-fair-roll argument aren’t
necessarily in conflict when p > 1/2.

Which contradicts Pr(snake eyes) = 1. The temp-
tation to treat Pr(X) as Pr(X | snake eyes) since
Pr(snake eyes) = 1 leads us astray!

4 To Infinity And Beyond (With A
Nonuniform Prior)

What if we reject the whole idea of defining a trun-
cated version of Snake Eyes to take a limit of? Can
we math out an answer for the infinite game directly?
Yes! The only monkey wrench is that we can’t have
a uniform prior over an infinite set.2 So let’s just say
we don’t quite have a uniform prior. Maybe Euclid
thinks he’s equally likely to be any of the first trillion
people chosen to play and that it gradually becomes
less likely after that. We can make that “trillion” as
high as we like.

As long as the probability of being chosen isn’t
exactly zero, there’s no 0/0 problem like before.

Is that fair though, to reject the stipulation in the
problem statement that Euclid is chosen uniformly?
Well, it’s arguably less of a leap than we made before
in defining a truncated version of the game where it’s
possible for no one to die. We’re just saying Euclid is
not quite chosen uniformly because he can’t be and
have any probability of being chosen at all. But we
can get arbitrarily close to uniform! We can even
consider the limit as the distribution approaches uni-
form. Great, let’s get to it!

First, think of every player in the pool being lined
up in an infinite queue. This ordering is established
once, before any dice rolls, and is independent of the
dice rolls. Now we can let QRc be the event that
Euclid is positioned in the queue such that, if the
game gets far enough, he’ll be in round c. (QR for
“queued for round”.) Let SEs be the event that snake

2Not in standard analysis anyway. If infinitely many things
are all equally likely then they all have zero probability. Or to
be slightly more formal, there’s an elegant proof by contradic-
tion: First, the sum of the probabilities of each element of the
set must be 1. That’s part of what it means to have a prior
over a set of possibilities. Now suppose every element in your
infinite set has equal probability ε. That’s what we mean by a
uniform prior. Further suppose that ε = 0. Then the sum of
the probabilities is 0. So that’s no good; we must have ε > 0.
But the sum of an infinite number of positive ε’s is infinity. So
that’s no good either. →←
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eyes is rolled in round s. Again, with QR defined
purely in terms of Euclid’s position in the pool, it’s
independent of SE.

Now define

pcs = Pr(QRc ∧ SEs)

as the probability of a game where Euclid is posi-
tioned to be chosen in round c and snake eyes is rolled
in round s. (So c > s is possible, just that it means
a game where Euclid doesn’t end up chosen because
snake eyes was rolled before we got to him.) Sum-
ming pcs over every possible c and s—every possible
game—necessarily gives us 1:

∞∑
s=1

∞∑
c=1

pcs = 1.

The independence of QRc and SEs gives us the
following:

pcs = Pr(QRc ∧ SEs)

= Pr(QRc) · Pr(SEs)

= Pr(QRc) · (1− p)s−1 · p.
(1)

That final line is because the only way to get snake
eyes on round s is by rolling not-snake-eyes s−1 times
in a row followed by one snake eyes.

We can write the unconditional probability of
death like this:

Pr(death) =
∞∑
i=1

pii. (2)

That’s just summing up all the infinite ways Euclid
can be chosen on the same round that snake eyes is
rolled.

For the unconditional probability of being chosen
to play, we can get it two ways:

Pr(chosen) =
∞∑
s=1

s∑
c=1

pcs =

∞∑
c=1

∞∑
s=c

pcs. (3)

In the first double sum, the outer sum iterates over
every round s on which we might roll snake eyes and
the inner sum covers all the cases where Euclid is

chosen on or before s. In the second double sum, the
outer sum iterates over every round c in which Euclid
can be chosen and the inner sum covers all the cases
where snake eyes is rolled on or after c.

Eventually we want to find the probability of death
given that Euclid is chosen. As we saw in the
original derivation, Bayes’ Law tells us that this
is Pr(death)/Pr(chosen). But first let’s compute
Pr(death | chosen ∧ QRc), Euclid’s probability of
death given that he is chosen on a particular round
c. We expect that probability to be p = 1/36 be-
cause it amounts to the one-shot scenario: a specific
round c when Euclid is chosen means there’s exactly
one way for him to die, namely, rolling snake eyes
on that specific round. To be totally sure, and to
sanity-check our pcs definition, let’s now compute it
rigorously. We start with the definition of conditional
probability:

Pr(death | chosen∧QRc) =
Pr(death ∧ chosen ∧ QRc)

Pr(chosen ∧ QRc)
.

The numerator can also be written Pr(SEc ∧ QRc)
or pcc, the probability that Euclid is both chosen in
round c and that snake eyes is rolled on round c.
And we can write the denominator in terms of pcs
by summing over all the ways Euclid can be chosen
in round c, namely by snake eyes being rolled on or
after round c:

pcc
∞∑
s=c

pcs

. (4)

Now we use (1) to expand that to

Pr(QRc) · (1− p)c−1 · p
∞∑
s=c

Pr(QRc)(1− p)s−1p

and cancel common factors (notice we’re summing
over s, not c) to get this:

(1− p)c−1

∞∑
s=c

(1− p)s−1

.

Because the denominator is a geometric series start-
ing at (1−p)c−1 and with common ratio 1−p we can
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replace it with its closed form and simplify the above
to this:

(1− p)c−1

(1−p)c−1

p

.

And that simplifies to p. Phew!
Knowing that (4) equals p implies that

∞∑
s=c

pcs =
pcc
p

. (5)

Finally we have everything we need to work out
Euclid’s chances of dying if he’s chosen to play. Recall
that

Pr(death | chosen) = Pr(chosen | death)Pr(death)
Pr(chosen)

=
Pr(death)
Pr(chosen)

.

By (2) and (3), that becomes
∞∑
i=1

pii

∞∑
c=1

∞∑
s=c

pcs

.

Coup de grâce coming up. The inner sum in the
denominator is the left-hand side of (5) so we can
substitute that in like so:

∞∑
i=1

pii

∞∑
c=1

pcc

p

.

And we’re home free. Factor out the 1/p and the
sums are the same sum:

∞∑
i=1

pii

1
p

∞∑
c=1

pcc

.

They cancel and the 1/p flips to the top as p and
we’re done!

Amazingly, we didn’t need to define a finite version
of the game. We just need a valid prior on when Eu-
clid is chosen. And even more amazingly, the answer
is completely independent of what that prior is. For
example, say it’s uniform for the first N possible val-
ues of where Euclid is in the queue of people in the
pool. Now compute Pr(death | chosen) in terms of
N . The answer, as we just saw, is p. No N in sight.
So in the limit as our prior approaches uniform? Still
p.

Or maybe you don’t like that the above prior has
a finite cutoff. No problem. Here’s a prior that’s
both arbitrarily close to uniform and puts positive
probability on all infinitely many future rounds in
which Euclid could be picked:

• Euclid’s probability of being chosen first is 1 in
a million

• Euclid’s probability of being nth in the queue
is 99.9999% as much as his probability of being
n− 1st.

In the limit as that “million” goes to infinity (and the
99.9999% = 1− 1/106 correspondingly goes to 1) we
again have a uniform prior. Paradox: resolved and
double-resolved.

Bibliography

Bartha, P. and Hitchcock, C. (1999). The shooting-
room paradox and conditionalizing on measurably
challenged sets. Synthese, 118(3):403–437.


	Problem Statement
	Solution (With Limits)
	Can We Roll Not-Snake-Eyes Forever?
	To Infinity And Beyond (With A Nonuniform Prior)
	Bibliography

