
 
The Shooting-Room Paradox and Conditionalizing on Measurably Challenged Sets
Author(s): Paul Bartha and  Christopher Hitchcock
Source: Synthese, Vol. 118, No. 3 (1999), pp. 403-437
Published by: Springer
Stable URL: http://www.jstor.org/stable/20118152
Accessed: 14-09-2016 11:21 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted

digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about

JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

Springer is collaborating with JSTOR to digitize, preserve and extend access to Synthese

This content downloaded from 129.105.215.146 on Wed, 14 Sep 2016 11:21:15 UTC
All use subject to http://about.jstor.org/terms



 PAUL BARTHA and CHRISTOPHER HITCHCOCK

 THE SHOOTING-ROOM PARADOX AND CONDITIONALIZING ON
 MEASURABLY CHALLENGED SETS

 ABSTRACT. We provide a solution to the well-known "Shooting-Room" paradox,
 developed by John Leslie in connection with his Doomsday Argument. In the "Shooting
 Room" paradox, the death of an individual is contingent upon an event that has a 1/36
 chance of occurring, yet the relative frequency of death in the relevant population is 0.9.
 There are two intuitively plausible arguments, one concluding that the appropriate sub
 jective probability of death is 1/36, the other that this probability is 0.9. How are these
 two values to be reconciled? We show that only the first argument is valid for a standard,
 countably additive probability distribution. However, both lines of reasoning are legitimate
 if probabilities are non-standard. The subjective probability of death rises from 1/36 to
 0.9 by conditionalizing on an event that is not measurable, or whose probability is zero.
 Thus we can sometimes meaningfully ascribe conditional probabilities even when the event
 conditionalized upon is not of positive finite (or even infinitesimal) measure.

 In a dark corner of a hotel bar, several figures sporting name tags are
 hunched around a small table covered in empty beer bottles. One of the
 figures is writing furiously on a napkin. The conversation is excited and
 confused, as many try to speak at once. The individual words that do escape
 from the white noise of the bar are ominous: "... executioner ... ", "...
 doomsday ... ", "... double sixes and you die!"

 Any participant in a recent philosophy conference is likely to have
 encountered a scene much like this. Radical philosophers plotting the over
 throw of civilization? No. They are merely curious thinkers testing their

 mettle on a paradox of probability: the shooting-room paradox. In Section
 1.1 of this paper, we will describe this paradox and present the well-known
 solution to one part of it. In Section 1.2, we will sketch the solution to the

 more intransigent part of the paradox. The subsequent sections provide
 the mathematical details upon which the solution depends. We believe that
 these details are of interest in their own right, and may have applications
 in a number of philosophical problems.

 ^M Synthese 118: 403-437, 1999.
 W% ? 1999 Kluwer Academic Publishers. Printed in the Netherlands.
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 1. INTRODUCTION

 1.1. The Ballad of George and Tracy

 Imagine that our protagonist, George, has been called to a place known
 throughout the world as the Shooting-Room. There are dire consequences
 for those who do not heed the call. As he enters the room, he reads a
 portentous sign above the door:

 Abandon all hope, you who enter this room!
 Well, not quite all hope - and here's why:
 You've a 1/36 chance of meeting your doom,
 Yet 0.9 of those entering will die!

 After George enters, a sinister figure at the front of the room - the "Exe
 cutioner" - announces that he will roll two ordinary six-sided dice. If the
 result is double sixes, George (and anyone else in the room with George)
 will be executed. This explanation seems to entail that George has a one in
 thirty-six chance of dying. Puzzle: how can the executioner's explanation
 be reconciled with the statement that 90% of those entering will die?

 Here are some hints: (1) The world in which George lives has a count
 ably infinite population. (2) The shooting room has movable walls, so that
 it can be expanded to arbitrarily large size. (3). The executioner is immor
 tal. (4) The last sentence of the verse above the door is not guaranteed to
 be true: there is a possibility that it will not be true, but the probability
 of this eventuality coming to pass is zero (just as it is possible that a coin
 tossed infinitely many times will never land heads, although there is zero
 probability that this will happen).

 Still stumped? Here is the solution: the shooting-room game is played in
 rounds. In each round, a larger number of people is called to the shooting
 room. In the first round, only one person is called; in the second round
 nine; in the third round ninety; and in each successive round, ten times the
 number of people called for the preceding round. The game ends only if
 and when double six is rolled in a given round, in which case all those in
 the chamber in the last round are executed.[ There is a probability of one
 that double sixes will eventually be rolled, and when that occurs, exactly
 ninety percent of those who have ever entered the room will be present in
 the final, fatal, round of the game.2

 This puzzle contains an important moral about the relationship between
 single-case probabilities and frequencies: we can only expect the latter to
 conform to the former when (1) individual events (in this case the execu
 tion or acquittal of those who enter the shooting-room) are probabilistically
 independent; and (2) stopping times are probabilistically independent of

This content downloaded from 129.105.215.146 on Wed, 14 Sep 2016 11:21:15 UTC
All use subject to http://about.jstor.org/terms



 THE SHOOTING-ROOM PARADOX  405

 frequencies. The latter restriction presents genuine problems in drug test
 ing, for example, when ethical considerations mandate the continuation of
 treatments that appear beneficial, and the termination of treatments that do
 not.

 The apparent paradox was resolved by noting that single case prob
 abilities and predicted frequencies need not coincide. We may recast the
 paradox, however, in such a way that the values 1/36 and 0.9 both appear
 to be rational subjective probabilities. Here's how. Suppose that George
 enters the shooting-room as before, and that he understands the mechanism
 of the game completely. What should be George's subjective probability
 for the proposition that he is executed, given that he has been selected to
 enter the chamber? The answer must be 1/36, for George knows that he
 will die if and only if the result of a throw of two fair dice is double sixes.
 Assuming that he can compute that the chance of this outcome is 1/36, that
 he has no other relevant information, and that his subjective probabilities
 are guided by his beliefs about chances,3 his subjective probability should
 be 1/36.

 Now suppose that George's mother, Tracy, also understands the mech
 anism of the game, knows that George was selected to enter the chamber,
 and hears the news that the game has ended. She does not know, however,
 whether George survived. What should be her subjective probability for
 George to have died? This time, a reasonable answer is 0.9. Tracy knows
 that a finite number of people entered the room, George among them. Of
 those people, 90% died (or perhaps 100%, if the game ended on the first
 round). Tracy has no additional information that is relevant to whether or
 not George was one of those who participated in the final round, and hence
 died, so Tracy's subjective probability that George dies should be 0.9.

 George and Tracy have exactly the same information, namely that
 George participated in the game. Neither knows on which round George
 was selected (we may assume that George was blindfolded, although
 in fact this does not matter); neither knows how the dice came up on

 George's round. How then can the probabilities for George and Tracy be
 so different?

 1.2. Sketch of the Solution

 The previous paragraph contains a little white lie. George and Tracy do not
 have exactly the same information: Tracy knows that the game has ended,
 but George does not. On the one hand, this seems crucial to the formulation
 of the paradox: when George phones Tracy to tell her that he is in the room,
 and that the executioner is about to roll the dice, it seems that her probabil
 ity for George's demise (before she learns that the game has ended) should
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 be only 1/36, the same as George's. On the other hand, it is hard to see how
 the additional information that the game has come to an end could matter:
 given that both George and Tracy understand the mechanism of the game,
 they should both assign probability one to the proposition that it eventually
 ends. Conditioning on a proposition with probability one does not change
 one's probability assignments, so this extra piece of information could
 hardly have raised Tracy's subjective probability from 1/36 to 0.9.

 It will be helpful, at this point, to make some additional assumptions
 about the manner in which individuals are selected to participate in the
 shooting-room game. Assume that each member of the population is as
 signed a distinct natural number at random: we will call these numbers
 'draft' numbers.4 These numbers are known only to the executioner; how
 ever, people know that they will be called no more than once. Individuals
 are called to the shooting room in the order of their draft numbers. Thus the
 first group to enter the room will consist of individual number 1 ; the second

 group will consist of individuals 2-10; then 11-100 and so on. In general,
 9 10"-2 people are selected at round n for n > 1. Before George is called
 to participate in the game, both George and Tracy have prior probabilities
 for propositions of the form: George has been assigned draft number /. Let
 us assume that George and Tracy have the same priors: a difference in their
 posterior probabilities (for George to die, upon learning that he participates
 in the game) would hardly constitute a paradox if they began with different
 priors.

 Suppose that the subjective probability function initially shared by
 George and Tracy is standard and countably additive. It follows that they
 cannot assign uniform probabilities to propositions of the form: George
 has draft number /. The sum of these prior probabilities must be equal to
 one, since the probability that George has some draft number is one. For
 example, it could be that the probability that George has draft number i is
 2~l, since 1/2 + 1/4 + 1/8 + sums to 1. However, the probability that
 George has draft number i could not be equal to any constant k. For if
 k ? 0, then the 'probability' that George has some draft number is 0 + 0 +
 0 + = 0; whereas if k > 0, the 'probability' that George has some draft
 number isk + k + k -\-= oo. So the prior probabilities that George has
 draft number / must converge to 0 as / approaches oo.

 In the case of a countably additive probability function, then, the ar
 gument for assigning a value of 0.9 to Tracy's probability that George
 dies is fallacious. In particular: the statement, "Tracy has no additional
 information that is relevant to whether or not George was one of those

 who participated in the final round, and hence died", is false. Tracy's
 priors provide such information: of necessity, they will be biased toward
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 THE SHOOTING-ROOM PARADOX  407

 early draft picks. In Section 2, we demonstrate that no matter what Tracy's
 initial prior probability is, so long as it is countably additive, it must be
 biased toward early draft numbers in exactly the manner necessary for her
 posterior probability for George's death to equal 1/36.

 De Finetti took this sort of case to provide an argument against the
 requirement of countable additivity for probabilities.5 He reasoned that it
 ought to be possible to have a lottery in which a countably infinite num
 ber of tickets is issued, and that a rational agent should not be prohibited
 from assigning equal probability to each ticket's winning. Presumably, the
 original intuition supporting Tracy's assignment of 0.9 was based on the
 assumption that her beliefs about the draft lottery were of this sort. In
 Sections 3 and 4, we use nonstandard analysis to construct a probability
 distribution wherein George does have an equal (infinitesimal) probability
 of receiving each draft number. In this case the frequency argument for
 why Tracy should assign a 0.9 probability for George's demise upon learn
 ing that the game has ended stands up. In this setting, Tracy's learning that
 the game has ended does make an impact upon her subjective probability
 function, even though her prior probability for this eventuality was one.
 The reason is that she is already conditionalizing on George's being selec
 ted to participate in the game, and as we shall see below this event must
 either have probability zero, or be non-measurable.6

 The problem is thus a special case of attempting to define a conditional
 probability P(A/B) where B is 'measurably challenged', i.e., not of pos
 itive measure. This means that P(B) = 0 or that B is non-measurable.

 While P(A/B) is typically defined as the ratio P(AB)/P(B), it is usually
 left undefined if B is measurably challenged.7 However, there are cases in
 which P(B) = 0, but it is intuitively clear that a conditional probability
 function P(/B) exists.8 (For detailed arguments on this matter, see Hajek
 (1999).)

 As a particularly simple example, suppose that we are throwing darts at
 a square grid that measures one meter by one meter. Due to poor aim, the
 very point of the dart is equally likely to hit any point on the grid. More
 precisely, any two regions of equal area are equally likely to contain the
 point where the dart hits. Let M be the horizontal line separating the top
 and bottom half of the grid; in terms of the coordinate system with origin at
 the bottom left, M is the set of all points (x, y) with y = 1/2. There is zero
 probability that a dart will land exactly along this line. Now let L be the left

 half of the grid, the set of points with x < ^. What is the value of P (L/M),
 the probability that the dart lands in the region L given that it lands on the
 line Ml Intuitively, the answer is 1/2, even though both P(L M) and
 P(M) are zero, so that the ratio P(L M)/P(M) is undefined.
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 Figure I. Conditionalizing on a set of zero measure.

 Figure 1 suggests one possible justification for this claim. Let 6 > 0.
 Let Me be the set of all points on the grid within 6 meters of M:

 M = {(x, 30/0 < x < 1 and 1/2 - 6 < y < 1/2 + e}.

 Let (L M) be the analogous extension of L M by a distance of 6:

 (L - M)e = {(x, y)/(x, 1/2) G L M and \ - 6 < y < 1/2 + e}.

 M can be thought of as the limit as 6 tends to 0 of the sets M , and analog
 ously for L M, as depicted in Figure 1. Moreover, for 6 > 0, M will have
 positive probability, and P((L-M)e/Me) = P((L-M)6-M )/P(M ) which
 is just the ratio of the areas of the two regions. But the area of Me is 26,
 and the area of (L M) is 2e times the linear measure of L M. It follows
 that \ime^oP((L M) /M ) is also the linear measure of L M. This limit
 seems to be an apt candidate for the conditional probability P(L/M).

 The above procedure can be readily generalized. Let R be any region
 on the grid. Then it seems intuitively clear that the conditional probability
 P(R/M) should just be the normal linear measure (i.e., one dimensional
 Borel measure) of the set of points contained in the intersection of R and
 M, whenever this is well-defined. It suffices to expand the sets R M
 and M to 'strips' of width 26, and to look at the limits of the conditional
 probabilities P((R M) /M ) as 6 -> 0.

 The approach we take in Section 4 is modeled on this example. We will
 be able to define conditional probabilities P(A/B), even though B is a
 non-measurable set (rather than a set of measure zero, as in the dartboard
 example). We will define P(A/B) as a 'limit' of conditional probabilities
 of the form P(Ar]/Br]), where B1] is measurable and P(By]) ^ 0. The twist
 is that the indices r? will be non-standard numbers.

 This method for ascribing conditional probabilities, when the event
 conditionalized on is not of positive measure, may be of much broader
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 value in addressing problems of philosophical concern. For example, one
 objection to probabilistic approaches to epistemology is that they seem to
 endorse a certain form of dogmatism: an agent who assigns probability
 one to some proposition must forever after assign probability one to that
 proposition, no matter what else she may learn. Updating by condition
 alization cannot dislodge such probability values. If, however, an agent
 is allowed to conditionalize on a proposition to which she did not previ
 ously assign positive probability, she may be able to retract her previous
 assignment of maximum probability. This is precisely what happens in the
 shooting room paradox. Although George and Tracy begin by assigning
 probability one to the proposition that the game will end, upon learning that

 George participates in the game, they are forced to revise their assignment
 to a much lower probability (5/162 to be precise!).

 1.3. Notation and Assumptions

 In order to set up the mathematics of the problem, we introduce some
 useful notation:

 Ln The game has length n.

 Rn George is selected to enter the room at round n of the
 game.

 G George is selected to enter the room at some round of the
 game.

 Ni George is assigned draft number /.

 D George dies.

 F The game finishes with a roll of double six. (Given the
 other assumptions, this means the game is finite.)

 p{ = P(Ni) (the prior probability for both George and Tracy that
 George has draft number /).

 _^ 1 AH ? 1 .

 rn = 22i=\ Pi (the prior probability that George is among the 10n_1
 people chosen by round n). It is also appropriate to set
 r0 = 0.

 Recall that P stands for the probability function representing George and
 Tracy's degrees of belief (which are taken to be identical).

 In addition to the assumptions enumerated in Section 1.2, we assume
 in what follows that the dice rolls and the assignment of draft numbers are
 independent, or rather that George and Tracy believe this to be the case.

 More precisely, this is the assumption that

 P(Nl/Ln) = P(Nt)
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 410  PAUL BARTHA AND CHRISTOPHER HITCHCOCK

 for all / and n.9

 1.4. The Problem

 Recall that when George enters the shooting room, the information he
 learns (and on which he conditions) is just that he has been selected to enter
 the room, which we signify by G. Tracy, by contrast, learns that George
 is a participant and that the game finishes, i.e., G F. The two conditional
 probabilities of interest are thus

 P(D/G) = George's posterior probability of dying, given George's
 information (that he has been selected to enter); and
 P(D/G F) = George's posterior probability of dying, given Tracy's
 information (that George has been selected and the game finishes).

 Assuming for the moment that these conditional probabilities are both
 well-defined, then the difficulty is that they should be equal; for condi
 tionalizing on an event with probability one makes no difference, and
 P(F) ? 1. Indeed, P(F) is obtained by summing the probabilities that
 the first double-six occurs at rounds 1, 2, 3 ... :

 (1/36) + (35/36)(l/36) + (35/36)2(l/36) +

 =<1/36) x (rdvs) ='
 So it appears that the two posterior probabilities P(D/G) and P(D/G- F)
 should be equal (if defined).

 We divide the analysis into two cases. In the first case (Section 2), the
 probability function is a standard, countably additive one. In the second
 case (Sections 3 and 4), the probabilities are non-standard.

 2. COUNTABLY ADDITIVE CASE

 First suppose that the prior probability function is countably additive.
 Countable additivity is a standard assumption applied to probability meas
 ures. It means that if E\, Ei, ... are mutually exclusive (so that P(Et
 Ej) =0 for all/ ^ j), then

 oo

 P(ElvE2v---) = ?rP(E?).
 n = \

 In this case, it is false that your mother should assign probability 0.9 to
 your dying upon reading your name in the paper. As explained in Section
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 1.2, this number depends upon the assumption that George is equally likely
 to be assigned any draft number. The assumption is false, because the prior
 probabilities must converge to 0 as the draft numbers become large.

 We now prove that, for this case, P(D/G) = P(D/F G) = 1/36
 regardless of how the prior probabilities are distributed over George's
 positions in the draft ordering. To see this, observe that

 (1) P(D/G) = ^Pdn-Rn/G) n=\

 oo

 = J2P(Rn/LnG)P(Ln/G).
 n=\

 Now given the independence of draft numbers and dice rolls assumed
 above, P(Rn/LnG), the probability that George is chosen in round n given
 that the game has length n and George is chosen, is precisely (rn?rn_\)/rn.
 The numerator is the sum of the probabilities of nth-round draft picks; the
 denominator is the sum of these probabilities for all of the first n rounds.
 So we have

 (2) P(Rn/Ln-G) = (rn-rn^)/rn.

 The other term, P(Ln/G), may be computed using Bayes' Theorem:

 P(G/Ln) - P(Ln) (3) P(Ln/G) =  P(G)

 where (again making use of the independence of draft numbers and dice
 rolls)

 P{G/Ln) = rn;

 P(Ln) = (35/36)"-' 1/36;
 OO OO

 P(G) = ? P(G/Ln) P{Ln) = ?r? (35/36)"-' 1/36.
 n?\ n=\

 Substituting these into (3), we get

 (35/36)"-' 1/36 -r? (4) P(Ln/G) =
 E~Li'V-(35/36y-I.l/36"
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 Notice that conditioning on G vastly increases the probability of a long
 game.

 Substituting (2) and (4) into (1) yields

 (5) P(D/G)

 = y rn - rw-! rn (35/36)*-1 . 1/36
 'n

 71 = 1

 1

 E^O (35/36);-1

 E~iO-(35/36)^.1/36

 J^(rn-rn^)-(35/36)"
 7 = 1

 Now the expression in square brackets can be broken up into two sums,
 since each converges absolutely. When this is done, and indices are
 relabeled, the expression in square brackets becomes

 OO oo

 JV? (35/36)"-' - (35/36) J]r? (35/36)"-',
 n=l n=0

 which (since r? = 0) equals
 oo

 \/36^Y,rn'05/36)n-X',

 canceling with the first part of (5) gives the answer, 1/36.
 It makes no difference if we add the information that the game is finite.

 This is because
 00

 n=\

 as is clear from an examination of (4). So if the probability measure is
 countably additive, there is no way to make sense of the intuition that the
 probability of George's having died, given that he was chosen, is 0.9.10

 3. THE TRUNCATED SHOOTING-ROOM GAME

 The analysis of Section 2 should leave us with some doubts. In particular,
 the requirement of a prior distribution weighted towards early draft num
 bers for George is disquieting. Since both George and Tracy are ignorant
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 THE SHOOTING-ROOM PARADOX 413

 of the actual draft function, it seems unreasonable to weight the prior dis
 tribution in this or any other way. Why shouldn't the executioner be able to
 choose his victims in a random order? In any case, ignorance of the actual
 draft assignment should incline George and Tracy towards a symmetrical
 distribution which assigns equal probability to pt = P(Nt), for every /.

 Suppose that such a distribution is possible, with p{ ? k for all /. Then
 Tracy might reason as follows. This time, P(Rn/Ln G) = 0.9, since by
 (2),

 (rn-rn-x) = (fc-lO^-fc-lO"-2) ^Q9
 rn (/c-10*-1)

 So by (1), we have

 oo

 (6) P(D/G) = ]T P(Rn/Ln - G)P(Ln/G)
 n=\

 oo

 = ^0.9.P(Ln/G)
 n-\

 oo

 = (0.9).^P(LH/G)
 n=\

 = (0.9) - P(F/G),

 which implies that P(D/F G) = 0.9. Let us pretend for a moment
 that we don't know that P(F) = 1. In order to reconcile the values
 P(D/F G) = 0.9 and P(D/G) = 1/36, we would have to have
 P(F/G) = 5/162. Given that George has been chosen, the probability that
 the game is infinite jumps from 0 to 157/162! This is, of course, impossible
 in a standard countably additive probability space; but it is precisely these
 values that we aim to justify.

 3.1. The Truncated Finite Game

 To motivate the approach that will be adopted, we will consider first a
 modified version of the problem, the "truncated finite game" of length M.
 As in the original version, 9 10""2 people are placed in the chamber on
 round n, and executed on a roll of double six. Unlike the original version,
 however, the truncated game stops even if there is no double six rolled by
 round M; the last group is then set free and the game is declared "safe".
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 414  PAUL BARTHA AND CHRISTOPHER HITCHCOCK

 Thus, we need only assume a finite population of m draftees, where m >
 \?m-\ jfas means we may assume a uniform prior distribution: George
 has a 1/m chance of being assigned draft number /, for 1 < / < m.

 Let P stand for the associated probability measure on the possible out
 comes of the game. Let T stand for "the game is safe", i.e., no double six
 is rolled during the first M tosses. Let G, D, and F be as before; clearly
 F = f, since F is the event that the game finishes with a toss of double
 six, i.e., is unsafe. We show that P(T/G) is close to 157/162: given that
 George enters the room, most likely it is during the last round of a safe
 game.

 To begin, we construct an outcome space with the probability measure
 P. Put m = {1, ..., m], and let Qx = m. Let Q2 = N. Put Qm = Q{ x Q2,
 and let A be the algebra consisting of finite unions of sets of the form A x B
 where A ? Qx and B ? ?l2. Events co in Qm are of the form co = (i,n)
 where i e Q\ and n e Q2. Here, / is George's draft position and n is the
 length of the game; n > M represents a 'safe' game. The measure P is
 defined by

 (7) P(A x B)

 I?i  J2(35P6)k~l 1/36
 . keB
 \k<M

 M
 + (35/36)M -eM(B)

 where

 0M(B) =  1, whmB H{n/n > M) ^ 0
 0, otherwise.

 The probability measure reflects the independence of draft assignments
 and dice rolls. Note that P(i = p) = 1/m for all p < m; that is, George
 has an equal probability of being assigned any draft number. In addition,
 P(n = k) = (35/36)*-1 (1/36) if k < M, and (35/36)M if k > M. So P
 corresponds to the desired prior probability assignments.

 We are interested in P(T/G), the probability of a safe game given that
 George is picked. Figure 2 depicts the entire outcome space Qm.

 G can be identified as the set of outcomes in the shaded region. More
 formally:

 G = {(i,n)/i < io^")-1},
 where M A n is the minimum of M and n. For we need both / < 10"_1 and

 i < 10M_1 in order to have (/, n) e G. The set T of safe games is just the
 set of outcomes where n > M:

 T = {(i,n)/n > M).
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 George is selected

 415

 M

 #of
 rounds
 (n)

 '/////// /y A //////Yr ////// /

 YtYX
 E

 i < 10
 n-1

 George's draft #(i)

 Figure 2. The truncated finite game.

 To compute P(T/G) = P(T n G)/P(G), we need to compute P(T n G)
 and P(G).

 M

 (8) P(G) = J^P(i - l0j-\n = j) + P(i < lOM'l,n > M)
 7 = 1

 M J Q7 ? 1 10M_1
 = V-(35/36V'-1 (1/36) +-(35/36) ??' m m

 7 = 1

 M

 1 (350/36)M - 1 1 /350\ +
 36m (350/36) - 1 10m \ 36

 M

 1 M 1 /350\
 [(350/36)M - 1] + 314m

 M

 (9) P(TDG) =
 10 M-\

 m  -(35/36)
 M

 10m V 36 j

 1
 10m (350/36)M.

 So dividing (9) by (8), we obtain

 (io) p(r/G) = 157rT7^ 314L1 V350; J ^ X

 1
 162 10 ( 36 Mt/' iOZ _ 1U / jo \
 157 314^350'

 Notice that this number is independent of the population size m, and clearly
 converges to 157/162 asM^ oo.
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 This means that if F stands for "the game ends with double six", we
 have P(F/G) ^ 5/162. Notice how different this is from the prior prob
 ability P(F) = 1 ? (35/36)M, which converges to 1 as M -^ oo. The
 most important observation here is this: although a safe game is a priori
 unlikely, once we conditionalize on the vastly more unlikely event that
 George is picked, the safe game becomes extremely probable.

 4. A NONSTANDARD MODEL OF THE SHOOTING-ROOM GAME

 In this section we will use nonstandard analysis to construct a new model
 of the shooting-room game. We stress that while we will be using non
 standard analysis as a tool, the probability measures that we ultimately
 define will be strictly real-valued, and finitely additive. Thus we are not
 committed to the existence of infinitesimal degrees of belief or anything of
 that sort. Just as imaginary numbers can be used to facilitate the proving
 of theorems that exclusively concern real numbers, our use of nonstandard
 analysis will be used to facilitate and motivate the construction of purely
 real-valued measures.

 In Section 4.1, we translate the truncated finite shooting-room game,
 described in the last section, into the milieu of non-standard analysis. This
 will yield a model of the game that we call the "truncated hyperfinite
 game", in which both the potential number of rounds and the population
 of people eligible to participate in the game are "hyperfinite" or non
 standardly infinite. Many readers will no doubt feel some trepidation upon
 seeing these words. The foundations of nonstandard analysis are indeed

 mathematically complex (as are the foundations of real analysis, we hasten
 to add), but once one has the apparatus at hand, it is actually quite easy
 to function within the milieu of nonstandard analysis. In particular, the
 infinite and infinitesimal numbers that populate the nonstandard realm are
 subject to the rules of finitistic mathematics in a way that the more familiar
 infinities of Cantorian set theory are not. Any readers able to comprehend
 the truncated finite model of the previous section should be able to read
 Section 4.1 with little difficulty.

 The fact that the infinities that appear in nonstandard models are quite
 different from those that we encounter in set theory does, however, give
 rise to a complication: the model we construct in Section 4.1 does not
 quite fit the shooting-room game as originally described. In particular, the
 latter assumed a countably infinite population, while our model treats the
 population as "hyperfinite". The model of 4.1 allows, for example, that
 the game might go on for some infinite number of rounds with no double
 sixes being rolled, and then stop after some specific round. This possib

This content downloaded from 129.105.215.146 on Wed, 14 Sep 2016 11:21:15 UTC
All use subject to http://about.jstor.org/terms



 THE SHOOTING-ROOM PARADOX  417

 ility of stopping after some infinite number of rounds seems alien to our
 normal way of thinking about infinity. We do not believe that this would
 be too high a price to pay for a solution to the shooting-room paradox,
 but fortunately, we do not have to pay it. In Sections 4.2 and 4.3, we
 gradually convert the "truncated hyperfinite game" of Section 4.1 back into
 a standard model of the game, where the number of potential rounds and of
 potential participants is countably infinite. On our way there, we will con
 struct a "semi-standard" game where the population is hyperfinite, but the
 number of rounds in the game is standard, i.e., potentially countably infin
 ite. Sections 4.2 and 4.3 provide only an overview of this construction; the

 mathematical details are relegated to Section 6. This material is somewhat
 more technical, and those readers who do not wish to bother themselves

 with the details of converting non-standard infinities to standard infinities
 may skip Sections 4.2 and 4.3 with little loss of continuity.

 We begin with a very brief review of nonstandard analysis. The central
 concept is the *-transform (pronounced star-transform). This is a function
 that maps standard entities into their nonstandard counterparts. The do

 main of this function is the set-theoretic hierarchy erected upon the real
 numbers. This domain includes real numbers, sets of real numbers, rela
 tions, functions, sequences, and so on. The image of some standard entity
 s under the *-transform will be denoted *s. For example, the set of standard

 numbers N becomes the nonstandard set *N. This entity will also be a set;
 it will not, however, just be the set of images of natural numbers under the
 *-transform. (We will elaborate upon this fact momentarily.) Indeed, this
 latter set {*n/n e N} (which it is convenient to refer to as N, even though
 it is not, strictly, a standard entity) is not the *-transform of any standard
 entity.

 This latter observation points to an important distinction between in
 ternal and external nonstandard entities. The definition of internal entities

 is complex, but roughly speaking, an entity is internal if it belongs to a
 set which is the image of some standard entity under the *-transform;
 otherwise, it is external.11 N is an external set; intuitively, from the per
 spective of nonstandard analysis, this is not a natural set of numbers, but

 more of a set-theoretic gerrymander. In general, Cantorian infinities are
 very different from nonstandard infinities, and the two mesh together very

 awkwardly.
 For illustrative purposes, we give an oversimplified and unrigorous

 analogy. (Those curious about the rigorous details should consult Hurd
 and Loeb 1985, chapters 1 and 2.) Let * map each real number onto an
 equivalence class of sequences of real numbers. *n will be the equivalence
 class of (n, n, ...), or [(n, n, ...)]. Two sequences will be equivalent if
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 their terms are identical in 'enough' positions. We will not say precisely
 what 'enough' means, but if two sequences agree in all but finitely many
 places, they agree in 'enough' places.

 More generally, the *-transform of a standard number-theoretic prop
 erty will hold of a nonstandard number if, for one of its representative
 sequences, that property holds for 'enough' standard numbers in the se
 quence. Consider, for example, the sequence (1, 2, 3, 4,...). Since each
 term in this sequence belongs to N, [(1, 2, 3,...)] will belong to *N. Note,
 however, that [(1, 2, 3,...)] is not equal to *n for any standard natural
 number n. Indeed, [(1, 2, 3,...)] is larger than any such number, since
 all but finitely many of the terms of the sequence are larger than n. Thus
 [(1, 2, 3,...)] is infinite, or more properly, hyperfinite. To see that such hy
 perfinite numbers are different from Cantorian infinite numbers, the reader
 should convince herself that there is no smallest hyperfinite number. Ana
 logously, the number [(1, 1/2, 1/3,...)], is greater than zero, yet smaller
 than any real number. Such numbers are infinitesimal. The *-transforms
 of the normal mathematical operations of addition, subtraction, multiplic
 ation and division are all well-defined on hyperfinite and infinitesimal
 numbers. The reader may confirm, for instance that the product of these
 two nonstandard numbers is * 1.

 Finally, we state two very useful facts. First, any finite non-standard real
 number can be decomposed into the sum of a finite real number, known
 as its standard part, and an infinitesimal number.12 We write ?r? for the
 standard part of rj. Second, let s = s\, s2, ... be a sequence of standard
 numbers that converges to limit n. Formally, s is a function defined on
 the natural numbers. Then *s will be a function on *N such that for every
 hyperfinite argument r?, s^ differs from n by at most an infinitesimal. In
 other words, a standard sequence converges to a value if and only if its
 nonstandard counterpart gets (and stays) infinitely close to that value.

 4.1. The Truncated Hyperfinite Game

 We first construct a non-standard version of the truncated game. Instead
 of stopping the game after a finite number of rounds, however, we stop if
 no double six occurs in the first r? rounds, where r? is an infinite integer in
 *N\N. Instead of a countable population, we now need to assume a hyper
 finite population of size m, for some fixed m6*N, m > 10^_1. This allows
 us to define a uniform probability distribution for the draft assignments.
 As in Section 3.1, we will construct a (non-standard) probability measure
 such that George has equal probability 1/m of being assigned any place in
 the draft.
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 The outcome space is ?2m ? Q\ x ?l2, where Q\ = m and Q2 = *N.13
 The algebra A consists of hyperfinite unions of sets A x B where A is an
 internal subset of Q\ and B is an internal subset of ?22.

 Again, we write co = (i,n) for elements of Qm, where i e Q\ and
 n e Q2. A safe game is represented by the condition n > r?. We define a
 non-standard measure ?jl^ on the algebra A by analogy with the definition
 for the truncated finite game

 (11) ?^AxB)
 (

 i?ii  ^(35/36)^ - 1/36
 L \**l?

 + (35/36)". O^B)

 where | A\ is the internal cardinality of A and

 when B H [n/n > r?) ^ 0

 l? ??(5) - i a otherwise.

 Then (Qm, A, ?jl^) is the internal probability space for the truncated game
 of length r\. Although the measure ?x^ depends on the choice of r\, we shall
 refer to it as p for the remainder of this section, since r? is held constant.

 As before, ?({(i, n)/i ? p}) = \/m for all p < m, so \i gives us the
 required uniform distribution over draft positions.

 Once again, we are interested in obtaining P(T/G), George's and
 Tracy's subjective probability of a safe game, given that George is picked.
 This value can be determined using the non-standard probability \x. Here,

 G = {(i,n)/i < K^-1}
 is the set of all outcomes in which George is picked, where r? A n is the

 minimum of r\ and n. Also,

 T = {(i,n)/n > rj)

 is the set of 'safe' games. These sets are analogous to their counterparts in
 the truncated finite game of Section 3.1. Figure 3 provides a picture of the
 probability space Qm, letting the shaded region represent the outcomes in
 the set G.

 The calculations (8)?(10) proceed exactly as in the finite case, replacing
 M with T]. In particular, if we write /xG for the conditional probability
 ?i('l G), then ?jlg is a non-standard measure on A, and we have

 1 ? 1 /350
 (12) ?(G) = ??[(350/36)" -!] + ___ 314m 10m V 36
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 *N  George is selected

 #of
 rounds
 (n)

 yWW'
 TtYA
 E

 i < 10
 n-1

 N
 George's draft #(i)

 Figure 3. The truncated hyperfinite game.

 and

 (13) plg(T) = 162
 157  314v350;

 Thus, Pg(T) differs from 157/162 by an infinitesimal amount.
 Now Loeb (1975) has shown how to turn a non-standard measure /x

 on an internal algebra A into a standard (real-valued, countably additive)
 measure ?1 on the smallest a-algebra containing A. The Loeb construc
 tion involves putting ?(A) = ??jl(A) for sets A e A, where ??jl(A) is
 the standard part of the number ?jl(A), and then utilizing Carath?odory's
 technique for extending a finitely additive measure on an algebra to a
 countably additive measure on a a -algebra. Applying the Loeb construc
 tion to \?g instead of ?jl, we obtain a standard, real-valued measure ??G such
 that, ?1g(T) = 157/162. The measure ?lg is precisely what we mean by
 P(-/' G), the probability conditional on G. If, as before, we put F ? f,
 then F represents an unsafe game in which a double six occurs by round
 r].Thm?G(F) = 5/162.

 Calculations similar to (8)?(10) show that ?1(D) ? 1/36, i.e., the
 chance of George's dying (or having died) given that he is chosen is 1/36,
 as it should be. Here,

 D H G = {(i, n)/\0n~2 < i < lO""1 and n < r?],

 so

 (14)
 A W1 - 10^-2 /35Y

 ^nG) = E?-m?u) ,36/ 36
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 0.9 (350/36)'' - 1
 " 36^ (350/36) - 1

 0.9
 = ?-[(350/36)^ - 1]. 314m

 Dividing (14) by /x(G) as given in (12), we obtain

 0.9[1 - (36/350)^]
 (324/10)-(36/350)^

 which has standard part 1/36.

 4.2. The Semi-standard Game

 So far, we have shown that in the two truncated versions of the game,
 George's and Tracy's inferences are both correct. This is because in each
 of these cases, we have P(D/G) = 1/36, P(D/F G) = 0.9 and
 P(F/G) ? fl^. So the probability that George dies given that he has
 been chosen is 1/36, but once we condition on the further information that

 the game is unsafe, this probability rises to 0.9. This accomplishes one of
 our objectives: showing how P(D/G) and P(D/F G) can be different,
 given a uniform distribution.

 But it is dissatisfying to end here. While the truncated hyperfinite game
 yields the correct probability values, it does so by introducing into the
 outcome space bizarre events which we had not originally envisaged, such
 as George's receiving a hyperfinite draft number, or participating in the
 game during a hyperfinite round. We will eventually construct a model
 which yields the right probabilities, but on a completely standard outcome
 space in which there is neither a hyperfinite population nor hyperfinite
 rounds. The construction proceeds in two stages. First, in this section, we
 consider a 'semi-standard' version of the game which involves a hyperfin
 ite population, but no hyperfinite rounds. In the next section, we solve the
 original problem by restoring the assumption of a countable population.

 Caveat: this section and the next involve a marked increase in technical

 difficulty. The move to a countable population and at most countably many
 rounds results in some of the relevant events (George's being picked; the
 game's being finite) becoming non-measurable. This complicates matters
 significantly. Readers who are satisfied with the solution provided thus far

 may wish to skip to Section 5.
 The outcome space for the semi-standard game is the same as in section

 4.1: Qm = m x *N, where we fix a hyperfinite integer m, the size of the
 population. As before, let m = {1,2,..., m}. Then Q = {(/, n)/i e m

This content downloaded from 129.105.215.146 on Wed, 14 Sep 2016 11:21:15 UTC
All use subject to http://about.jstor.org/terms



 422  PAUL BARTHA AND CHRISTOPHER HITCHCOCK

 and n e *N}, where as usual / is George's draft number and n is the length
 of the game. The games that don't finish are just the non-finite outcomes,
 that is the pairs (i,n) with n g N. The unsafe games are thus the finite
 outcomes:

 F = {(i,n)/n eN}.

 G is the set of games in which George is chosen at some finite round during
 the game:

 G = {(i,n)/i eN,/ < 10"-1}.

 Although / must be finite for George to be chosen, n need not be in N,
 since the set G includes infinite games in which George is picked.

 We define a measure ?jl on the algebra A of internal subsets of Qm by
 setting

 (15) p(A x B) = |4| Ij2(35/36)k~l ' 1/36) * 'm' \keB /

 The hyperfinite sum is well-defined, because B is internal, /x is defined on
 any hyperfinite union of rectangles A x B. So (Qm, A, ?jl) is an internal
 probability space. Moreover, /x({(/, h)/i = p}) = 1/m for all p e N, so
 /x gives the required uniform distribution over draft positions. Note that /x

 and the /x^ of Section 4.1 (defined in (11)) are very similar in form, but ?jl
 does not depend upon r\.

 Since (as noted earlier) N is not internal, neither F nor G is internal;
 hence, neither set is /x-measurable. However, both F and G can be written
 as countable unions of sets in A. Consequently, if /x is obtained from /x
 by the Loeb construction, then /x(G) and ?1(F) are defined, and in fact
 ?1(G) ? 0 and ?1(F) = l.14 So it is natural to think of G as having prob
 ability 0 and F as having probability 1. Of course, the fact that /x(G) = 0
 implies that we cannot define conditional probabilities ?t(-/G) in the usual

 way.
 Nevertheless, we can imagine conditionalizing on the event that George

 is picked. We can, for instance, feel fairly confident that P(D/G) is 1/36.
 We might also be led by our experience with the two truncated games to
 believe that P(D/G F) = 0.9. If we are prepared to go this far, then we
 must also believe that P(F/G) = 5/162. There might also be additional
 events E such that P(E/G) has an intuitive value.

 But how can we make sense of conditionalizing on a set that is either
 non-measurable or has measure zero? The most convincing answer is to
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 demonstrate that we can actually construct a measure ?iG on an algebra

 A% of subsets of Qm that has the required properties. The remainder of
 this section accomplishes this task; we stress that the construction here is
 the key to the solution of the original problem.

 We construct the algebra A% in such a way that for r? e *N\N, every A
 inAfr has a natural analogue A^ in the algebra for the truncated hyperfinite
 game of length r?. In fact, each A will be the 'setwise limit' of the sets Av,
 since the intersection over r? e *N\N of the set theoretic differences AAA^
 is empty. This means that there is nothing included in (excluded from) A
 that is not eventually included in (excluded from) all sets Av, as r? decreases
 within *N\N.

 Even though some of the sets in A% will not be internal, each set A^
 will be an internal subset of Qm. We show that the standard part of the
 quotient

 (16) ^ ]r . ?} /x(G^)

 is constant for each r?, and define a conditional probability measure pG on

 A% by letting /jlg(A) be this constant. This process gives us a well-defined,
 finitely additive probability measure on an algebra of sets.15

 This strategy for defining the conditional probability is similar in spirit
 to the method described for the geometric example in the introduction.

 We expand both A and G slightly to sets with a well-defined, non-zero
 /x-measure, and take the standard parts of the quotients in (16). It turns out
 that these standard parts are constant, which is the analogue of convergence
 in the truncated finite game.

 The algebra A% and the ^-mapping are constructed in Section 6.1; the
 measure ?jlg is constructed and proven to be well-defined in Section 6.2.
 We will here only summarize the properties of /xG:

 The measure ?jlg is finitely additive on the algebra A%.

 ?c(F) = -^2 which follows from the result (13) of Section 4.1. The
 chance of a finite game is slim, given that George is picked.

 iiG(D) = ^, which follows from the discussion following (14) of
 Section 4.1.

 pG(D/F) ? 0.9, which follows from the above results and the fact
 that/xG(D/F) = 0.

 4.3. The Original Game

 At last! We are finally ready to construct a measure vG which intuitively
 corresponds to conditionalizing on George's being picked in the original
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 game, i.e., to P(/G). Recall that the original game means: no hyperfinite
 population and no hyperfinite rounds of the game. However, we still need
 to use hyperfinite integers to represent the game, in order to establish a uni
 form probability distribution and to represent the possibility of an infinite
 game.

 The outcome space Q = N x *N. So Q = {(i, n)/i e N and n e *N},
 where / is George's draft number and n is the length of the game. As in
 Section 4.1, the unsafe games are simply the finite outcomes:

 F = {(i,n)/n eN}.

 And G is the set of outcomes in which George is chosen at some finite
 round during the game (we no longer need to explicitly require / g N):

 G = {(i,n)/i < 10"-1}.

 It is straightforward to turn this set into a probability space with the correct
 unconditional probabilities for events such as "the game lasts n rounds",
 or "George is picked on round ri\ The events are those in the algebra
 A consisting of finite unions of sets A x B where A is any subset of N
 and B is an internal subset of *N. We want a measure which assigns an
 equal infinitesimal probability to George's being given any draft number.
 The measure on A, which we shall call v, is defined as follows. Fix a
 hyper-finite integer m, and as before let m = {1, 2, ..., m}. This set has a
 non-standard cardinality of m. For any A c N and internal B c *N, set

 (17) v(A x B) = l^^ (^(35/36)^' l/36) ,
 where \*A D m | is the internal cardinality of * A O m.16 The hyperfinite sum

 is well-defined (since B is internal). So (Q, A, v) is a probability space.
 Most importantly, v({(i,n)/i = p}) = 1/m for all / e N; thus v gives
 the required uniform distribution by assigning equal probability to each
 of the countably many draft positions.17 In addition, v assigns probability
 (35/36)*-1 1/36 to the event n ? k. So v is just what we want to represent

 George and Tracy's prior probabilities for the shooting-room game. And
 nothing in the definition of v depends on the preceding sections.

 The trouble arises, of course, when we try to conditionalize on G, be
 cause neither G nor F is v-measurable. However, we can conditionalize
 on G by simply carrying over the work of Section 4.2, once we observe a
 systematic correspondence between the probability spaces defined in this
 section and the last.
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 Q_?m

 #of
 rounds
 (n)

 N

 N m
 George's draft #(i)

 Figure 4. The a-mapping.

 Note first that for any rectangle A x B in Q, the rectangle (*ADm)x B
 is a measurable subset of the outcome space Qm = m x *N defined in
 Section 4.2, since *A n m is internal. Furthermore, it is clear that

 v(A x B) = ?i(CAC\m) x B).

 This correspondence defines a mapping between standard outcomes in Q
 and 'semi-standard' outcomes in Qm; we shall call it the a-mapping. Fig
 ure 4 illustrates the correspondence. In the lower part of the picture, where
 A is a finite subset of N, horizontal rectangles of the form A x B map to
 themselves, since *A = A. The rectangles above the dotted line (signifying
 n ? N) are all of the form N x {n} and are mapped torn x {n}.
 We want to extend the a-mapping to sets such as G, as illustrated.
 In order to do this, we interpret the a-mapping in the following manner.
 The way that we have defined the measure v on Q is to regard a stand
 ard event E, definable as a y-measurable subset of Q, as analogous to a
 /x-measurable subset of QM. This latter subset can be thought of as rep
 resenting the analogous event a(E) in the 'semi-standard' game: it is the
 same event, except that a hyperfinite population of size m is substituted
 for the countable population of the standard set-up. We then define the
 probability of the standard event E by assigning to it the probability of its
 'semi-standard' analogue a (E).
 For example, consider the event, "the game lasts more than 1 round".
 This can be represented as J ? {(i,n)/n > \,i e N} for the standard
 game, and a(J) = {(i,n)/n > \, i em} for the semi-standard game.
 Of course, v(J) = jx(a(J)). Similarly, consider the event, "George's draft
 number is greater than 10". The standard representation is K ? {(/, n)/ i >

 /// ^sssssss /// y^r K\\\\\\s ///A\\\SSSS> / / /\

 VtYa\
 E

 added for G0
 (the set Z)
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 10, / e N}; the semi-standard representation is cr(K) = {(i,n)/i > 10,
 / g m}, and once again v(K) ? ?jl(o(K)).

 The crucial next step is to extend the mapping a between standard and
 semi-standard events to non-measurable events - specifically, to those that
 can be represented in the algebra A% of Section 4.2. Most importantly
 we want to establish analogues for the two events of greatest interest in the
 shooting-room game: F (the game finishes) and G (George is picked). The
 analysis is clearest for F. The 'unsafe' standard game

 F = {(i,n)/n eN,i e N}

 plainly corresponds to the unsafe semi-standard game

 a(F) = {(i,n)/n G N, / G m}.

 More problematically, the event of George's being picked in the standard
 game,

 G = {(i,n)/i gN and i < 10""1},

 corresponds to George's being picked in the non-standard game, which
 happens to be exactly the same set:

 a(G) = {(i,n)/i G N and i < Iff1"1}.

 For even in the semi-standard game, George's draft number must be in N
 if he is actually selected. Arguably, however, o(G) should be the larger
 set pictured in Figure 4, since this is what we would get if we applied the
 a-mapping one rectangle at a time.

 This creates a technical difficulty, because we want to define a on a
 basis for an algebra of sets, and extend it inductively to the full algebra by

 putting a (A HB) =a(A)Da(B)mda(AUB) = a(A)Ua_(?)_. In precise
 terms, the difficulty is as follows. Consider the standard set GHF of infinite

 games in which George is not selected. In the standard game, this set is
 empty: George is assigned a finite draft number, so that he will eventually
 be selected in any infinite game. By contrast, in the semi-standard game,
 this set is not empty, since there are infinite games in which George is
 assigned a draft number in m\N.

 In fact, if we let cr(G) and a(F) stand for the semi-standard outcomes,
 then

 a(G) n or(F) = {(/, n)/i e m\N, n G *N\N};
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 we will call this set Z. The set Z is indicated in Figure 4. The difficulty,
 then, is that the mapping o is not well-defined: the image a(0) of the
 empty set 0 should again be the empty set, but by writing 0 = G H F and
 applying the inductive definition, we get <r(0) = Z.

 Fortunately, it is not too difficult to tidy up a, because it turns out that
 fiG(Z) = 0, where \xG is the conditional probability defined in Section
 4.2. It should hardly be surprising that the probability of an infinite (semi
 standard) game in which George is not selected, given that George is
 selected, is zero, and the proof is straightforward. Because Z is a set of
 measure 0, we can simply tack it on in defining the a-image. This will
 allow us to define the conditional probability vG for the standard game,
 on essentially the same algebra of sets as in Section 4.2. The details are
 contained in Section 6.3.

 We may thus define, for A in the algebra A%,

 vG(A) = ?G(o(A)).x*

 This completes the construction of the probability measure vG, which
 is intended to have the properties of P(/G), probability conditionalized
 on G. The measure is finitely additive on the algebra A%.

 It is worth briefly rehearsing the steps involved in evaluating vG(A), for

 A G A%.

 Step 1: The a-mapping. First, we map A, a subset of ?2 = N x *N, tocx(A),
 the analogous subset of Qm = m x *N. This sets up a correspondence
 between events in the standard game and events in the semi-standard game;
 the measure von?, corresponds to ?x on Qm.

 Step 2: The r\-mapping. Second, we modify both a (A) and G - neither of
 which is likely to be ^-measurable - by applying the r?-mapping to both
 sets (for suitably small rj e *N\N). In effect, this sets up a correspondence
 between the semi-standard game and the truncated hyperfinite game of
 Section 4.1. Theorem 1 assures us that the ratios p(a(A)r) D Gr})/p(Gr))
 are constant (up to an infinitesimal difference).

 Step 3: Conditionalization. vG(A) is defined as this constant ratio.

 Since ?jlg(Z) ? 0, we may carry over all important results from Section
 4.2. In particular, we have at last proved the results, which all follow from
 the discussion at the end of Section 4.2:
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 VG(D/F) = 0.9.

 5. CONCLUSION

 In the countably additive case, there is no way to make sense of assigning a
 subjective probability of 0.9 to George's demise - but the weakness of this
 analysis is its inability to accommodate the intuition that George is equally
 likely to have any draft position. In the non-standard case, which allows
 us to assign equal probability to each event in a countable partition, the
 above analysis demonstrates that the crucial factor in determining whether
 the subjective probability of George's dying is 1/36 or 0.9 is the possession
 of knowledge about whether or not the game comes to an end.19

 This only confirms what we all know: mother is always right, or at
 least never wrong! George, like so many of his generation, was quick to
 accuse his mother of worrying too much.20 But with experience (and a little
 nonstandard analysis), George will soon come to realize that his mother's
 fear for his life was justified after all.

 6. CONSTRUCTIONS AND PROOFS

 6.1. Construction of A^ and the rj-mapping

 In this section, we construct the family A% and the r?-mapping of Section
 4.2.

 In what follows, we use 0 to represent an arbitrary function from N
 to N, and x/r for the specific function x//(n) = 10"_1. For any such 0, put
 (j)f(n) = (?)(n) A x//(n), the minimum of 0 and x/r. We shall say that 0 is
 of the same order as \?r if lim^^^)/^^) exists; the limit is a non
 negative real number. This condition will be abbreviated by writing 0 is
 Oir\ we will also write

 4>(n) ,
 x/f(n)

 to mean that limn^ (p(n)/iff(n) = k. Note that if 0' is Oir, then
 4>f(n)/\l/(n) ~ k for some k with 0 < k < 1.

 We start with a basis ? for the algebra, consisting of four types of
 subsets of Qm.

 1. A??> = {(/, ri)/i < <p(n) and / G N}, where 0' is O^
 2. Afp = {(i, ri)I i > 4>(n) or / f? N}, where 0; is O^
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 3. Bs ? {(/, n)/n G S], where S ? N is finite or co-finite.
 4. Bs = {(/, n)/n ^ S}, where 5 ? N is finite or co-finite.

 The algebra A% consists of all finite unions of finite intersections of sets
 in ?. It is easy to verify that this set is closed under finite intersections,
 finite unions, and the taking of complements; hence, it is an algebra. Most
 standard events of interest in the game can be expressed in terms of a set
 in this algebra. Sets of types 3 and 4 represent conditions on the length of
 the game, while in sets of type 1 and 2, the functions 0 are used to specify
 ranges of possible draft positions for George. For instance, 10"~2 < / <
 IQH-i represents the condition that George is chosen in the last round; the

 set of outcomes satisfying this condition is ?$ H A^, where (p(n) = 10"~2.
 It is easy to check that the intersection of any two sets of the same type

 is another set of that type. This is obvious for sets of type 3 or 4, and for
 the first two types it is a consequence of the following Lemma.

 LEMMA 1. If 0i and 02 are O^ then so are 0i + 02, |0i - 02U 0i A 02,
 0i v 02 and /c 0i, for any constant k G N. Here, a denotes minimum and
 v denotes maximum.

 Proof. Suppose (j)\(m)/^jr(n) ~ a and 4>2(n)/\?s(n) ~ b. Then we can
 write 0i(n) = a \?/(n) + a(n) and 02(n) = b \?r(n) + ?(n), where
 a(n)/\?/(n) ~ 0 and ?(n)/\j/(n) ? 0. Since [a(n) + ?(n)]/ijf(n) clearly
 approaches 0 as n -> oo, this shows that [0i(n) + 4>2(n)]/\l/(n) ? a + b.
 The other results are proved similarly. D

 For sets of types 1 and 2, we allow only functions 0 such that 0' is O^.
 This is because 0//Vr ^ kif and only if ?W(r])/ir(r?)] = k for every r? g
 *N\N,21 and it can be verified that 0r must satisfy this condition in order
 for ?G(A(f)) to be defined.

 The next step is to define, for rj g *N\N, the ^-mapping which pairs
 each set A in A% with an internal subset A^ of Qm. We first define Av for
 the four basic types of sets.

 1. A0,?/ = {(i,n)/i < (p(n A ?])}.
 2. A^? = {(/, n)/i > (?)(n A rj)}.
 3. BSrl = {(/, n)/n G *S and n < r]}.22
 4. BSj] = {(i,n)/n <?*Sorn> r?}.

 The following pictures illustrate the relation between sets of types 1 and

 2 in A$ and their images under the ^-mapping; similar relations exist for
 types 3 and 4. The pictures make it clear that for any A g A%, the sets An
 'converge setwise' to A as r? decreases within *N\N.

 Strictly speaking, for unbounded functions 0, the sets A^ and ?^^
 are not proper subsets of Qm if rj is sufficiently large, since there will be
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 *N
 #of

 rounds!
 (n)

 Type 1 sets  Type 2 sets

 N

 V/;N\\\\1
 y/A\^ *
 yyyy(
 E

 added for

 George's draft #(i)

 21 <t> and rp are extended to the hyperfinite integers via the ^-transform.
 22By *5, we mean the ""-transform of S.

 Figure 5. The ^-mapping.

 values of rj with <?>(r?) > m. It is sufficient for our purposes that given
 m G *N\N and given any function 0, there is a A G *N\N such that if
 ?] < A, then <?>(r?) < m. In other words, for sufficiently small r\ e *N\N,

 the sets A^ and ?^ are proper subsets of Qm. In what follows, when we
 speak of results about such sets as being true for r? g *N\N, this should
 be understood as restricted to appropriately small values of r\. No such
 restrictions on the ^-mapping are needed for sets of types 3 and 4.

 We can now define An inductively:

 If A = Ax H A2, then An = (Ax)r] n (A2)rr
 If A = Ai U A2, then Av = (Ai)? U (A2)ri.
 If A = B, then A^ = ?r

 We omit the (somewhat tedious) proof that the ^-mapping is well-defined.
 The key step is the following:

 LEMMA 2. If Bu ..., Bk e ? and Bx n H Bk = 0, then (Bx)n n n
 (**)? = 0.

 From this result, basic set theoretic arguments suffice to show that A^ is
 well-defined for every A e A%.

 6.2. Definition of ?jlg

 We define the measure p,G of Section 4.2 by the following formula:

 ?xG(A)  {?(A^nGy)
 /x(GJ
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 for A g Ap whenever this number is constant for rj g *N\N. We shall
 say that fiG(A) is defined if this condition is satisfied. Since \i and the r?

 mapping are well-defined, so is the function ?jlg. Note that G is just a 'type
 1' set, specifically A^ where \//(n) = 10" *, so

 G^ = {(i,n)/i < ^r(n A rj)}.

 The following theorem states that ?xG(A) is defined for A e A%.

 THEOREM 1. For every A e A%, there is a constant real number a such
 that for every r\ e *N\N, ?[jLt(A^ n G^)//x(G^)] = a. That is, /xG(A) is
 defined and equal to a.

 The theorem is proved first for the four basic types of sets A in A%, i.e.,
 for sets A in ?.

 1. Suppose A = A0, where (j)'(n) / Wn~x - a. Then 0'(ft) = alO^1 +
 a (ft), where ?(jO/IO"-1 - 0. Since A?] n G^ = {(/, ft)// < 0'(ft A r?)},
 we have (by the definition of \x in (15))

 AfW /35V~ 1 0rW /35 V (18) p(A? nG?) = J^ ?- ? ? + ?? ?

 _ Aq- IP"'1 /35\"~' 1 a- 10""' /35V

 Y^a(n)/35y_l 1 a(ij) /35V
 ?^~m~\36) 36 + ~^V36/

 '1 / \ /->c\ n-1
 ^ ^Y^a(")/'35V ! ?(?7) ^35Y

 m \36/ 36 m \36 n=\ x

 Since a(n)/10"_1 ~ 0, given any e > 0 we can find a finite M such
 that a (/?) < 6 10""1 for ft > M. It follows that the second and third
 terms in (18) sum to less than

 Acx(ft) /35V7-1 1

 Hence, when we divide (18) by /x(G^) and take the standard part, the
 result is just a. So ?jlg(A) is defined and equals a.
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 2. If A = ?0, where 0/(ft)/lO""1 ~ a, then it follows that ?jlg(A) is
 defined and equals I ? a, since (A^ H G^) U (?^ D G^) = G^.

 3. Suppose A = Z?s, where S ? N is finite or co-finite.

 (a) If S is finite, then *5 = S, so that A^ = Bs,n = Bs. Now

 BsHGrj = {(i,n)/i < \0n~l,n G 5}.

 Suppose K is an upper bound for S, for some finite K. Then

 /x(A, n G,) = J]

 K

 10"-1 /35V"1 1
 m

 lo*-1

 36  36

 1

 35V-1 1
 m V36/ 36

 (350/36)* - 1'
 36m |_ (350/36) - 1 _

 and it is clear that ?[/x(A^ H G J/p,(G J] = 0 for every r? g *N\N.
 So ?jlg(A) = 0 in this case.

 (b) If 5 is co-finite, then S = f for some finite 7\ Then

 A, = B S,r? = {(i,n)/n <T],n^T}
 So

 A^nG^ {(/,/!)// < 10"_1,ft < 7/,n ?7}
 = {(i,n)/i < I0n-\n < r?}\{(i,n)/i < 10"-% G 7}

 = (F,nG,)\(?r),ng,

 where Fn is the 'unsafe' set F of Section 3.2. There, we showed
 that ?[?ri(Frj fi Grj)/prj(Grj)] = 5/162; the result also holds if we
 substitute \x for ?i^. Since r is finite, ?[?(BTiJinGr])/?(Gri)] = 0,
 as just shown. Hence, for this case, /xG(A) = 5/162.

 4. Finally, suppose A = 2?^, where S ? N is either finite or co-finite.
 Then it follows from the above results that ?jlg(A) = 1 if S is finite
 and 157/162 if S is co-finite.

 The next step is to prove that Theorem 1 holds if A is a finite intersection
 of sets in ?. Recall (from Lemma 1) that the intersection of any two sets
 of the same type is another set of the same type; it follows that we may
 assume that A is a finite intersection of at most four sets, one of each type.
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 Furthermore, if S is finite and Bs is in the intersection, then case 3 above
 shows that ?jlg(A) = 0. If S is a co-finite set, then S n f is co-finite if T is
 finite, and finite if T is co-finite; this shows that we may assume that one
 of the following cases holds: (i) the intersection contains no sets of type
 3 or 4; (ii) the intersection contains exactly one type 3 set Bs where S is
 co-finite, and no type 4 set; (iii) the intersection contains exactly one type
 4 set and no type 3 set. It is straightforward that if we can demonstrate that
 ?jlg(A) is defined for the first two cases, then it is defined for the third as

 well. Thus it remains only to prove that Theorem 1 holds for cases (i) and
 (ii):

 Case (i). Suppose A = A^ n ?^2, where both 0i and 02 are O^
 Then X^ = A^^ n G^ can be expressed as the disjoint union of Y^ =
 A^ H G^ and Zy] = A(0]A02M D G^. So /x(X^) = ??(Y^) + /x(Z^). Now
 suppose 0i(ft)/lO"-1 ~ a\ and 02(ft)/lO"-1 ~ a2. It follows that (0i(ft) a
 02(ft))/lO'7-1 ~ (?\ A ?2)-So dividing the equation just proven by/x(G^),
 taking standard parts, and applying the first part of the proof, we conclude
 that ?xG(A) ? a\ ? (a\ A a2).

 Case (ii). By employing the method of Case (i), it suffices to show that
 l?G(A) is defined if A = A??> Pi Bs where S is co-finite. Let S = f, where
 T is a finite subset of N. Then we have

 a^hg

 So

 p(An H G?)

 The subtracted portion, when divided by p(Gn), clearly has standard part
 0, by part 3(a) of the proof for sets in ?. And assuming that 0'(ft) = a
 \0n~] +a(n) where a (ft)/10"-' ~ 0, the first part of the expression, when

 divided by /x(G^), has standard part -^a. So ?jlg(A) is well-defined and
 equals -^a. This shows that A^ and Bs are independent with respect to
 ?jLG. This seems correct, since the set A^ of draft positions for George and
 the set #5 of possible game lengths can be specified independently.

 A(pyti n bSji n Gr,

 {(/, ft)// < 0r(ft A rj),n < rj,n qL T}.

 Af(n) /35Y"1 1
 n=\  m V 36  36

 nfW /35V-1 1 v
 n=l  m \ 36

 0'(ft) /35y_1 1 36 36 ^?' m \ 36
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 We have shown that ?jlg (A) is defined if A is one of the sets in the basis
 ? or a finite intersection of sets in ?. Theorem 1 now follows from two
 easily verified facts:

 1. If A = U*=1A/ is a disjoint union, and ?jlg(A?) is defined for / =
 1,..., k, then pG(A) is defined and equals Ym=i MgC^/)

 2. Any set in A% may be written as a disjoint union of finite intersections
 of sets in ?.

 6.3. Construction of A% and vG

 The algebra for the original game of Section 4.3, which we again call A%,
 has as its basis ? the four types of set:

 1. A0 = {(/, ft)// < 0(ft) and / G N}, where 0' is Oi/r.
 2. ?<p = {(/, ri)I i > 0(ft)}, where 0' is O^
 3. Bs = {(/, ft)/ft G S}, where S ? N is finite or co-finite.
 4. Bs = {(/, ft)/ft & S}, where S ? N is finite or co-finite.

 The full algebra A% consists of all finite unions of finite intersections of
 sets in ?. The only change from Section 4.2 is that the draft number / is
 always restricted to N, which makes the type 2, 3 and 4 sets different.

 We would like to map each of these sets under a to the corresponding
 set in Section 4.2. For instance, a(A<?)) should just be A<?> again; and o(Bs)
 should be the same as Bs, except that / is extended to range over m instead
 of just N. As we have seen, the mapping a is (so far) not well-defined.
 However, because Z is a set of measure 0, we can simply tack it on in
 defining the a-image. For instance, a(A(p) = A^UZ. Then a is well
 defined on ? and can be extended to all of A$ by the inductive definition.
 The following result holds:

 LEMMA 3. If Bu Bk g ? and Bx H n Bk = 0, then ?xG\a(Bx) D
 ...nor(?*)] = 0.

 We may thus define, for A in the algebra A%,

 (19) vG(A)=?G(a(A)).
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 NOTES

 Similar versions of the "shooting-room paradox" are described in Leslie (1996) and
 Eckhardt (1997). The original formulation of the paradox is due to Leslie, who formulated
 it to present one version of his doomsday argument: if the population is increasing at a
 geometric rate, then we should assign a high probability to our belonging to the final,
 doomed generation.
 2 Exception: one hundred per cent if double six is rolled on the first round - a detail
 omitted from the verse for rhythmical considerations.

 3 More precisely, we assume that George's subjective probabilities are in accord with
 the Principal Principle: P(A/B ch(A/B) = p) = p, where P is George's subjective
 probability, ch is chance, and P does not incorporate any 'inadmissible' information about
 the truth of A. See Lewis (1980).

 4 At any rate, members of the population are ignorant of the mechanism for assigning
 numbers, so that the draft assignments appear random to them.

 5 DeFinetti(1975), p. 123.
 6 A non-measurable event is one to which it is impossible to assign a consistent measure.
 For example, using the standard Lebesgue measure on the [0, 1] interval, it follows from
 the axiom of choice that there exists a subset of [0, 1] that cannot consistently be assigned
 a measure. See Roy den (1968), p. 63 ff.
 7 Or perhaps it is fixed arbitrarily. That is, within measure theory one can prove the exist
 ence of a function having all of the characteristics of conditional probability and assigning
 a value to P(A/B), but there will be many such functions and they need not agree on the
 value of P(A/B) when P(B) is not of positive finite measure. See Billingsley (1996), p.
 427.

 8 It should now be clear that this paper has an underlying political objective: to 'empower'
 the measurably challenged sets by letting them claim their rightful place in the world of
 conditionalization.

 9 Note that this assumption excludes certain versions of the shooting-room game. For ex
 ample, the assumption of independence will fail if the executioner knows in advance when
 the game will end (perhaps he has pre-rolled the dice, and simply reveals the result of each
 roll as the participants enter the room) and rigs the draft numbers so that George is certain
 to participate. (Or rather, the assumption will fail if George and Tracy believe that this is
 so.) This version of the game is particularly relevant in connection with the Doomsday

 Argument; for further discussion of that argument and the independence assumption, see
 our paper (1999).

 10 Actually, there is one way. If Tracy sees a complete list of all the participants, then she
 knows not only that the game was finite, but also the length of the game. So she knows that

 Ln is true, for some n. In this case, her probability for George to have died is P(Rn/G-Ln),
 which is given by Equation (2) as (rn - rn__i)/rn. This number could equal 0.9 for finitely
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 many values of n, even though the ratios converge to 0 as ai -> oo. In any case, we have
 assumed that Tracy is ignorant of the actual length, and knows only that the game was
 finite.

 1 * See Hurd and Loeb (1985), II.6 for a discussion of the internal/external distinction.

 12 See Hurd and Loeb (1985), 1.6.

 3 As before, m = {1, ..., m}.

 For G, this follows from the fact that G is a subset of U^?_^{(i, ri)/i = p}. Each of
 these sets has /x-measure 1/m, and hence /2-measure 0. We can show that (?)(F) = 1 by

 writing F as the countable union U0^ {(i,n)/n = j], since the yth set in this union has

 measure (35/36)^"1 1/36.
 15 Although the measure is not countably additive, this is not to be expected. For F is the

 countable union of the sets Ln, and we want \iG (F) = -^, but ?iG (Ln) = 0 for each n.
 16 By * A, we mean the *-transform of A.

 17 Non-standard measures can thus be used to solve the lottery problem raised by De
 Finetti. We first learned how to define a non-standard measure on N from Brian Skyrms
 via Alan H?jek.
 18 Formally, the first G is a subset of Q and the second a subset of ?2m, but in fact the two
 sets of points are identical.

 19 We depart here from Leslie (1996), who maintains that the difference depends on
 whether or not the dice tosses constitute a deterministic process. Leslie reasons that in the

 "fully deterministic" case, "you must expect disaster. Disaster is what will come to over
 90 per cent of those who will ever have been in your situation" (p. 255). We believe that
 his argument amounts to this: if George believes that the set-up is deterministic, then he
 believes that the game is determined to end, and hence that it will end. As we have shown,
 Leslie is right in one sense: if George believes that the game will end, then his degree of
 belief that he will die given that he participates is indeed 90 per cent. However, George's
 inference from 'the set-up is deterministic' to 'the game is determined to end' would be
 fallacious. Determinism by itself tells George nothing about which of the a priori possible
 outcomes (among them the infinite games) will occur.

 20 Indeed, of worrying (0.9)/(l/36) % 32 times too much.

 21 0 and \fr are extended to the hyperfinite integers via the *-transform.

 22 By *5, we mean the *-transform of S.
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